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van der Waals heterostructures are an emergent class of 
metamaterials that consist of vertically stacked two-dimensional 
building blocks, which provide us with a vast tool set to engineer 
their properties on top of the already rich tunability of two-
dimensional materials.1 One of the knobs, the twist angle between 
different layers, has a crucial role in the ultimate electronic 
properties of a van der Waals heterostructure and does not have a 
direct analogue in other systems such as MBE-grown semiconductor 
heterostructures. For small twist angles, the moiré pattern that 
is produced by the lattice misorientation creates a long-range 
modulation. So far, the study of the effect of twist angles in van der 
Waals heterostructures has been mostly concentrated in graphene/
hexagonal boron nitride twisted structures, which exhibit relatively 
weak interlayer interaction owing to the presence of a large bandgap 
in hexagonal boron nitride.2–5 Here we show experimentally that 
when two graphene sheets are twisted by an angle close to the 
theoretically predicted ‘magic angle’ the resulting band structure 
near charge neutrality becomes flat owing to the strong interlayer 
coupling.6 These flat bands exhibit insulating phases at half-filling, 
which are not expected in a non-interacting picture. We show that 
the half-filling states are consistent with a Mott-like insulator state 
that can arise from electrons localized in the moiré superlattice. 
These unique properties of magic-angle twisted bilayer graphene 
may open a new playground for exotic many-body quantum 
phases in a two-dimensional platform without magnetic field. 
The easy accessibility of the flat bands, the electrical tunability, 
and the bandwidth tunability though twist angle may pave the way 
towards more exotic correlated systems, such as unconventional 
superconductors or quantum spin liquids.

Exotic quantum phenomena often occur in condensed matter and 
other systems with high density of states. Remarkable examples include 
superconductivity and the fractional quantum hall effect. One way of 
creating high density of states is to have flat bands with weak dispersion 
in momentum space, where the electron kinetic energy is set by the 
bandwidth W. When the Fermi level lies within the flat bands, 
Coulomb interactions (U) can then greatly exceed the kinetic energy 
of the electrons and drive the system into various strongly correlated 
phases ( / �U W 1).7–11 The study of such flat-band systems in bulk 
materials continues to be scientifically important, and the search for 
new flat-band systems, such as in kagome and Lieb lattices as well as in 
heavy fermion systems, is ongoing.7–12

Recent advances in two-dimensional materials provide a new route 
for achieving flat bands. An inherent advantage in two-dimensional is 
that the chemical potential of electrons can be continuously tuned via 
electric field effect without introducing extra disorder. In a twisted van 
der Waals heterostructure, the mismatch between two similar lattices 
generates a moiré pattern (Fig. 1b). This additional periodicity, which 
can have a length scale orders of magnitude larger than the underlying 

atomic lattices, has been shown to create a fractal energy spectrum 
in a strong magnetic field.2–4 In twisted layers, the interlayer hybridi
zation is modulated by the moiré pattern as well. As an example, the 
band structure of TBG can be tailored to generate band gaps and band 
curvatures otherwise absent in the graphene bands.6,13–17 Although the 
well-known building blocks for van der Waals heterostructures, such as 
graphene and transition metal dichalcogenides, do not have intrinsic 
flat bands at low energies, it has been predicted theoretically that flat 
bands may exist in TBG.6,14–16,18 In this work, we demonstrate experi-
mentally that when the twist angle of TBG is close to the theoretically 
predicted ‘magic angle’, the interlayer hybridization induces nearly-flat 
low-energy bands. This quenching of the quantum kinetic energy leads 
to a correlated insulating phase at half-filling of these flat bands, which 
points towards a Mott-like insulator in the localized flat bands.

To zeroth order, the low energy band structure of TBG can be con-
sidered as two sets of monolayer graphene Dirac cones rotated about 
the Γ​ point by the twist angle θ (Fig. 1d).6 The difference between the 
two K (or K′​) wave vectors gives rise to the mini Brillouin zone (MBZ), 
shown as a small hexagon, which is reciprocal to the moiré superlattice. 
The Dirac cones near the same valley mix through interlayer hybridiza-
tion, while interactions between distant Dirac cones are exponentially 
suppressed.6,13 As a result, the valley itself remains (for all practical 
purposes) a good quantum number. Two experimentally verified con-
sequences of this hybridization are energy gaps that open near the inter-
section of the Dirac cones and renormalization of the Fermi velocity

∇= | | = ′v
ħ

E1
k k k K KF ,

at the Dirac points.13,19–21

The theoretically calculated ‘magic angles’ θ i
magic
( ) , i =​ 1, 2, … are a 

series of twist angles at which the Fermi velocity at the Dirac points 
becomes zero.6 The resulting low-energy bands near these twist angles 
are confined to less than about 10 meV. These phenomena can be 
qualitatively understood from the competition between the kinetic 
energy and interlayer hybridization energy (Fig. 1e-g). Intuitively, when 
the hybridization energy 2w is comparable or larger than ħv0kθ where 
v0 =​ 106 m s−1 is the Fermi velocity of graphene and kθ ≈​ Kθ is the 
momentum displacement of the Dirac cones, the lower of the hybridi
zed states is pushed to and crosses zero energy. A detailed treatment 
gives the first magic angle θ = /w ħv K3 ( )magic

(1)
0 , which is approxi-

mately 1.1°.6 Fig. 1c shows an ab initio tight-binding calculation of the 
band structure for θ =​ 1.08°.16 The labeled flat bands have a bandwidth 
of 12 meV for the E >​ 0 branch and 2 meV for the E <​ 0 branch. From 
a band theory point of view, the flat bands should have localized wave 
function profiles in real space. Figure 1h shows the calculated local 
density of states for the flat bands. The wave functions are indeed highly 
concentrated in the regions with AA stacking, while small but finite 
amplitudes on the AB and BA regions connect the AA regions and 
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endow a weak dispersion to the bands.6, 15, 18 A brief discussion about 
the topological structure of the bands near the first magic angle is given 
in Methods and Extended Data Fig. 1.

For the experiment, we fabricated high-quality encapsulated TBG 
devices with twist angle precisely controlled to about 0.1°–0.2° accuracy 
using a previously developed ‘tear and stack’ technique.13,17,22 We have 
measured four devices that have twist angles near the first magic angle 
θ ≈ . °1 1magic

(1) . Fig. 2a shows the low-temperature two-probe conduct-
ance of device D1 as a function of carrier density n. Near n =​ ±​ns =​  
±​2.7 ×​ 1012 cm−2 (4e− per moiré unit cell for the twist angle θ =​ 1.08°), 
the conductance is zero over a wide range of densities. These insulating 
states have been previously understood as hybridization induced band 
gaps above and below the lowest energy superlattice bands, and will be 
hereafter referred to as the ‘superlattice gaps’.13 The measured thermal 
activation gaps are about 40 meV.13,17 The twist angle can be estimated 
from the density required to reach the superlattice gaps, which we find 
to be θ =​ 1.1° =​ 0.1° for all of the devices reported here.

A new pair of insulating phases occurs for a narrower density range 
near half of the superlattice density n =​ ±​ns/2 =​ ±​1.4 ×​ 1012 cm−2 (2e− 
per moiré unit cell). These insulating states have a much smaller energy 
scale. Note that this behaviour is markedly different from all other zero-
field insulating behaviours previously reported in the recent literature 
(which occur at either ±​ns or at an integer multiple of ±​ns), and we 
shall refer to them as half-filling insulating states.13,17 These states 
are observed at roughly the same density for all four devices (Fig. 2a  
inset). Fig. 2b–d show the conductance of the half-filling states in 
device D1 at different temperatures. Above 4 K, the system behaves as a 
metal, exhibiting decreasing conductance with increasing temperature. 
A metal-insulator transition occurs near 4 K. The conductance drops 
significantly from 4 K to 0.3 K, with the minimum value decreasing by 
1.5 orders of magnitude. An Arrhenius fit gives a thermal activation 
gap of about 0.3 meV for the half-filling states, two orders of magnitude 
smaller than those of the superlattice gaps. At the lowest temperatures 
the system may be limited by conduction through charge puddles, 
resulting in deviation from the Arrhenius fit.

To confirm the existence of the half-filling states, we performed 
capacitance measurements on device D2 using an ac low-temperature 
capacitance bridge (see Extended Figure 2).23 The real and imaginary 
components of the ac measurement give information about the change 
in capacitance and the loss tangent of the device, respectively. The latter 
signal is tied to the dissipation in the device due to its resistance.23 
Device D2 exhibits a reduction in capacitance and strong enhance-
ment of dissipation at ±​ns/2 as shown in Fig. 3a, in agreement with an 
insulating phase that results from the suppression in density of states. 
The insulating state at −​ns/2 is weaker and only visible in the dissipa-
tion data. The observation of capacitance reduction (i.e. suppression 
of density of states) for only the n-side half-filling state in this device 
may be due to an asymmetric band structure and/or device quality. The 
reduction (enhancement) in capacitance (dissipation) vanishes when 
the device is warmed up from 0.3 K to about 2 K, consistent with the 
behavior observed in transport measurements.

The emergence of half-filling states is not expected in a single-
particle picture and appears to be correlated with the narrow bandwidth 
near the first magic angle. In our experiment, several separate pieces of 
evidence support the presence of flat bands. First, we measured the 
temperature dependence of the amplitude of Shubnikov–de Haas (SdH) 
oscillations in device D1, from which we extracted the electron effective 
mass m* (Fig. 3b, see Methods and Extended Data Figure 3 for analysis). 
For a Dirac spectrum with eight-fold degeneracy (spin, valley, and 
layer), one would expect that ⁎= / πm h n v(8 )2

F
2  which scales as 1/vF. 

The large measured m* near charge neutrality in device D1 indicates a 
25-fold reduction in vF (vF =​ 4 ×​ 104 m s−1, compared to 106 m s−1 in 
monolayer graphene). This striking reduction of the Fermi velocity is 
an expected characteristic of the flat bands. Furthermore, we analyzed 
the capacitance data of device D2 near the Dirac point (Fig. 3a), finding 
that a Fermi velocity reduced to about 0.15v0 is necessary for a good fit 

to the data (see Methods and Extended Data Figure 1b). Finally, another 
direct manifestation of such flat bands is the flattening of the conduct-
ance minimum at charge neutrality above a temperature of 40 K 
(kT =​ 3.5 meV), as seen in Fig. 3c. While the conductance minimum 
in monolayer graphene can be clearly observed even near room 
temperature, it is smeared out in magic-angle twisted bilayer grapheme 
(MA-TBG) when the thermal energy kT becomes comparable to 
vFkθ/2 ≈​ 4 meV, the energy scale spanning the Dirac-like portion of the 
band (see Fig. 1c). 24-26

Due to the localized nature of the electrons, a plausible explana-
tion for the gapped behavior at half-filling is the formation of a Mott-
like insulator driven by Coulomb interaction between electrons.27,28 
To this end, we can consider a Hubbard model on a triangular 
lattice, where each site corresponds to a localized region with AA 
stacking in the moiré pattern (Fig. 1i). Fig. 3d shows the numerically  
calculated bandwidth of the E>​0 branch of the low-energy bands for 
0.04° <​ θ <​ 2° using a continuum model of TBG.6 The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated as e2/(4π​εd), in which d is the effective linear 
dimension of each site (with the same length scale as the moiré period) 
and ε is the effective dielectric constant including screening. Absorbing 
ε and the dependence of d on twist angle into a single constant κ, we 
can write U =​ e2θ/(4π​ε0κa) (a =​ 0.246 nm is the lattice constant of 
monolayer graphene). In Fig. 3d we plot the on-site energy U versus θ 
for κ =​ 4–20. As a reference, κ =​ 4 if one assumes ε =​ 10ε0 and d equals 
40% of the moiré wavelength. For a range of possible values of κ it is 
therefore reasonable that U/W >​ 1 occurs near the magic angles and 
results in half-filling Mott-like gaps.27 The realistic scenario is however 
much more complicated than these simplistic estimates and will require 
detailed theoretical analysis of the interactions responsible for the cor-
related gaps.

The SdH oscillation frequency, shown on the right-hand axis of Fig. 3b,  
also supports the existence of Mott-like correlated gaps at half-filling. 
Near the charge neutrality point, the oscillation frequency closely 
follows fSdH =​ φ0|​n|​/N where φ0 =​ h/e is the flux quantum and N =​ 4 
indicates the spin and valley degeneracies. Surprisingly, at |​n|​ >​ ns/2 
we observe oscillation frequencies that corresponds to straight lines 
fSdH =​ φ0(|​n|​ −​ ns/2)/N in which N has a reduced value of 2. Moreover, 
these lines extrapolate to zero exactly at the densities of the half-filling 
states at n =​ ±​ns/2. These oscillations point towards small Fermi 
pockets that result from doping the half-filling states, which might 
originate from charged quasiparticles near a Mott-like insulator 
phase.29 The halved degeneracy of the Fermi pockets might be related 
to the spin-charge separation predicted in a Mott insulator.29 These 
results are also supported by Hall measurements at 0.3 K presented 
in Extended Data Figure 4 (see Methods for discussion), that show 
a ‘resetting’ of the Hall densities when the system is electrostatically 
doped beyond the Mott-like states.

The half-filling states at ±​ns/2 are suppressed by the application of a 
magnetic field. Figure 4a-b shows that both insulating phases start to 
conduct at a perpendicular field of B =​ 4 T and recover normal con-
ductance by B =​ 8 T. A similar effect is observed for in-plane magnetic 
field (see Extended Data Figure 5d). The insensitivity to field orienta-
tion suggests the suppression of the half-filling states is due to a Zeeman 
effect rather than an orbital effect, as the latter would be affected only 
by the perpendicular component of the magnetic field. For an effec-
tive g-factor g =​ 2 due to electron spin, the Zeeman energy needed to 
suppress the half-filling states is approximately gμBB =​ 0.5 meV, of the 
same order as the thermal excitation energy scale.

Our data point towards the presence of a spin-singlet Mott-like 
insulator ground state at half-filling and zero magnetic field (Fig. 4e). 
The application of an external magnetic field can possibly polarize the 
excitations in the spectrum of the correlated states according to their 
spin. When the Zeeman energy exceeds the charge gap, charge conduc-
tion can therefore occur (Fig. 4f). In a typical Mott insulator, the ground 
state usually has an antiferromagnetic spin ordering below the Néel 
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temperature. On a triangular lattice, however, the frustration prevents 
the fully anti-parallel alignment of adjacent spins. Possible ordering 
schemes include 120° Néel order and rotational symmetry breaking 
stripe order.30 It is yet unclear whether the spin-singlet ground state in 
MA-TBG is fulfilled by any of the above ordering schemes or simply 
disordered at low temperatures. In the half-filling states of MA-TBG it 
is also possible that the ordering, if any, occurs in conjunction with the 
valley degree of freedom. Therefore, a complete theoretical treatment 
of this problem should at least involve considering a two-band Hubbard 
model on a triangular lattice.

We also comment on other competing mechanisms for creating 
a half-filled insulating state in a system with flat bands. Among the 
possibilities, charge density waves in two-dimensional are often stabi-
lized by Fermi surface nesting, which can in principle occur near the 
half-filling of a two-dimensional Brillouin zone.31 However, the nesting 
is not sufficient to fully gap out the entire Fermi surface to achieve an 
insulating state. In order to create a global gap at half-filling, at least a 
doubling of the unit cell would be necessary, which could be created by 
a commensurate charge density wave or lattice relaxation due to strain. 
Scanning tunneling microscopy conducted at temperatures below 4 K 
may be able to differentiate such mechanisms.

In summary, our work demonstrates that graphene can be trans-
formed through van der Waals engineering into a flat-band system 
where novel insulating states at half-filling are present. These insu-
lating states cannot be explained by a simple non-interacting picture, 
and point towards the importance of correlations in this flat-band 
system. However, we note that the lattice and electronic structure near 
MA-TBG superlattices is very complex and further theoretical and 
experimental work will be fundamental to fully ascertain the impor-
tance of correlation effects. Through its easy gate tunability, MA-TBG 
could thus provide a novel playground for studying the transition 
between a correlated metal and an interaction-driven insulating state, 
which may provide insight into strongly-correlated materials, notably 
high-temperature superconductivity. The richness of the combined 
spin and valley degrees of freedom on a triangular lattice could also give 
rise to other exotic quantum phases such as quantum spin liquids.32

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 1 | Electronic band structure of twisted bilayer graphene (TBG). 
(a) Schematic of the TBG devices. The TBG is encapsulated in hexagonal 
boron nitride flakes of about 10–30-nm thickness. The conductance is 
measured with a voltage bias of 100 μ​V while varying the local bottom gate 
voltage. (b) The moiré pattern as seen in TBG. The moiré wavelength 
λ =​ a/[2sin(θ/2)] where a =​ 0.246 nm is the lattice constant of graphene 
and θ is the twist angle. (c) The band structure of θ =​ 1.08° magic-angle 
TBG (MA-TBG) calculated with an ab initio tight-binding method.  
The bands shown in blue are the flat bands under study in this work.  
(d) The mini Brillouin zone (MBZ) is constructed from the difference 

between the two K (K′​) wave vectors from the two layers. Hybridization 
occurs between Dirac cones within each valley, while intervalley processes 
are strongly suppressed. (e-g) Illustration of the effect of interlayer 
hybridization for (e) w =​ 0, (f) θ�w ħv k2 0  and (g) 2w ≈​ ħv0kθ. (h) 
Calculated local density of states (LDOS) for the flat bands with E >​ 0 at 
θ =​ 1.08°. The electron density is strongly concentrated at the regions with 
A–A stacking order, while mostly depleted at A–B and B–A stacked 
regions. See Extended Data Fig. 6 for density of states versus energy at the 
same twist angle. (i) Top view of a simplified model of the stacking order.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Figure 2 | Half-filling insulating states in magic-angle TBG (MA-TBG). 
(a) Measured conductance of a MA-TBG device D1 with θ =​ 1.08°. Dirac 
point is located at n =​ 0. The lighter shaded regions are superlattice gaps 
at carrier density n =​ ±​ns =​ ±​2.7 ×​ 1012 cm−2. The darker shaded regions 
denote half-filling states at ±​ns/2. Inset shows the density locations of 
half-filling states in four different devices. Definition of the error bars is 

explained in the Methods. (b) Minimum conductance values in the p-side 
and n-side half-filling states in device D1, labeled by corresponding colors 
as defined in (a) and (c-d). The dashed lines are fits of the formula  
exp[−​Δ/(2kT)] to the data, where Δ ≈​ 0.31 meV is the thermal activation 
gap. (c-d) Temperature dependent conductance of D1 from about  
0.3–1.7 K near the (c) p-side and (d) n-side half-filling states.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Figure 3 | Flat bands in MA-TBG. (a) Capacitance measurements of 
device D2 at 0.3 K (blue trace) and 2 K (pink trace). The change in the 
measured capacitance (upper traces), Δ​C, is plotted on the left axis, and 
the loss tangent (lower traces) is shown on the right axis. For density 
corresponding to half-filling ±​ns/2, reduction in Δ​C (on p-side only) and 
enhancement in loss tangent (on both sides) are observed (0.3 K data). 
These effects disappear in the 2 K measurements. (b) The effective mass m* 
and oscillation frequency fSdH as extracted from temperature-dependent 
SdH oscillations. The fitting curves are ⁎= / πm h n v(8 )2

F
2 , assuming a 

uniform Fermi velocity vF. For magic-angle device D1 the estimated Fermi 
velocity vF =​ 4 ×​ 104 m s−1 is 25-times reduced from that in pristine 
graphene, v0 =​ 1 ×​ 106 m s−1. The measured oscillation frequencies point 

towards the existence of small Fermi pockets that start from the half-filling 
states with one half the degeneracy of the main Fermi surface of the Dirac 
points. Shaded regions at half-filling and full-filling correspond to the 
shaded rectangles in Fig. 2a. (c) Gate-dependence of the conductance of 
D1 at different temperatures from 4.5 K to 120 K. The curves are vertically 
shifted by 0.006 mS between each curve for clarity. See Extended Data  
Fig. 5a, b for a full temperature dependence up to room temperature.  
(d) The comparison between the bandwidth W for the E >​ 0 flat band 
branch in TBG and the on-site energy U for different twist angles. Near the 
magic angles θ i

magic
( )  ≈​ 1.1°, 0.5°, …, U >​ W is satisfied for a range of 

possible κ (defined in the main text), and the system can be driven into a 
Mott-like insulator.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Figure 4 | Magnetic field response of the half-filling insulating phases. 
(a-b) B⊥ dependence of the conductance of the half-filling states for D1 on 
(a) p-side and (b) n-side. The measurement is taken at 0.3 K. (c) Arrhenius 
plot of the conductance of the p-side half-filling state at different magnetic 
fields. The inset shows the thermal activation gap extracted from fitting 
the data of the main plot with exp[−​Δ/(2kT)]. (d-f) Schematic density of 
states (DOS) pictures. The single-particle flat-bands (both E >​ 0 and E <​ 0 
bands are shown, with EF in the E >​ 0 band, i.e. n-doping) in (d) is split 
into upper and lower many-body bands by interactions (e). This occurs 

when EF is at half-filling of the upper band. Upon applying a Zeeman field, 
the excitations can be further polarized and close the charge gap when 
the Zeeman energy is comparable to the gap (f). Purple shading denotes 
a spin-degenerate band, while blue and red shading denote spin-up and 
spin-down bands respectively. CNP abbreviates for charge neutrality 
point. The shape of the DOS drawn here is purely illustrative and does not 
represent the actual DOS profile (see Extended Data Fig. 6 for numerical 
result).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Methods
Sample preparation. Device D1, D2 and D4 are fabricated using a modified 
‘tear & stack’ technique detailed in previous works.13,17,22 Monolayer graphene 
and hexagonal boron nitride (h-BN, 10 to 30 nm thick) are exfoliated on SiO2/Si 
chips and examined with optical microscopy and atomic force microscopy. We 
use a Poly(Bisphenol A carbonate) (PC)/Polydimethylsiloxane (PDMS) stack on 
a glass slide mounted on a micro-positioning stage to first pick up h-BN flake at 
90 °C. Then we use the van der Waals force between h-BN and graphene to tear a 
graphene flake at room temperature. The separated graphene pieces are manually 
rotated by an angle θ about 0.2°–0.3° larger than the desired twist angle and stacked 
together again, resulting in a precisely controlled TBG structure. The TBG is then 
encapsulated by picking up another h-BN flake on the bottom, and the entire 
stack released onto a metal gate at 160 °C. The final device geometry is defined 
by electron-beam lithography and reactive ion etching. Device D3 is fabricated 
using a slightly different procedure, where independent graphene flakes are stacked 
together. The edges of graphene flakes are aligned under optical microscope to 
obtain small twist angles.
Measurements. Transport measurements are performed using a standard low 
frequency lock-in amplifier with excitation frequency of about 10–20 Hz and 
excitation voltage of 100 μ​V, in a He-3 cryostat. The current flowing through the 
device is amplified by a current pre-amplifier and then measured by the lock-in 
amplifier.

Capacitance was measured using a low-temperature balanced capacitance 
bridge.23 A schematic of the measurement circuit is shown in Extended Data Fig. 2a.  
The reference capacitance Cref used in our experiment is approximately 40 fF, and 
the device geometrical capacitance is approximately 7 fF. The ac excitation voltage 
used in our measurements is 3 mV at f =​ 150 kHz.
Transport data in device D4. Transport measurements in both D1 and D3 
were performed in a two-probe configuration. Although it is generally advised 
to perform four-probe measurements in transport experiments, we find that 
the existence of multiple insulating states (both the superlattice gaps at ±​ns and 
half-filling states at ±​ns/2) frequently lead to noisy or negative Rxx signals due to 
the region in the device near the voltage probes becoming insulating at a slightly 
different carrier density. In our case where we are mostly interested in the insulating 
behaviours on the order of 100 kΩ​ to 1 MΩ​, a contact resistance of at most a few 
kΩ​ that is typical in edge-contacted graphene device does not obscure the present 
data.33 Thus we believe that the two-probe data presented throughout the paper 
is fully trustable and gives an accurate presentation of the device characteristics.

Extended Data Fig. 4b, c show the measurements of the two-probe and 
four-probe conductances in a fourth device D4, which has a twist angle of 
θ =​ 1.16° ±​ 0.02°. Device D4 was measured in a Hall-bar configuration so that 
the contact resistance can be removed. In this particular device, both the super
lattice insulating states and the half-filling states do not have very high impedance 
(probably due to disorder and/or inhomogeneity), and therefore the previously 
described issues with four-probe measurements did not occur. It is clear that the 
four-probe and two-probe measurements essentially show the same features, while 
some weak signals appear to be better resolved in the four-probe measurements.

In the four-probe data, we not only observe the half-filling states (±​2 electrons 
per moiré unit cell), we also see evidence for odd-filling insulating phases at ±​3 
electrons per moiré unit cell as weak reduction in the conductance curve. Note that 
the existence of insulating behaviours at other integer fillings of the flat bands than 
±​2 is a result to be expected in the Mott-like insulator picture, and further lends 
support to our claim that the correlated insulating behaviour originates from the 
on-site Coulomb interaction.
Hall measurement in device S4. We have also measured the device D4 in a Hall 
configuration (Rxy). Extended Data Fig. 4d, e show the low-field linear Hall coef-
ficient RH =​ Rxy/B and the Hall density nH =​ −​1/(eRH) versus gate-induced charge 
density n. In a uniformly gated single-carrier two-dimensional electronic gas, one 
expects that nH =​ n. This is what we have measured in the density range (−​1.3–1.3)  
×​ 1012 cm−2 at 0.3 K. Near the half-filling states n =​ ±​ns/2, however, the Hall 
density abruptly jumps from nH =​ n to a small value close to zero (but not changing 
its sign). Beyond half-filling, nH follows nH =​ n ±​ ns/2, a new trend that is consistent 
with quasiparticles that are generated from the half-filling states. This ‘resetting’ 
effect of the Hall density gradually disappears as the temperature is raised from 
0.3 K to 10 K, in agreement with the energy scale of the Mott-like states. At higher 
temperatures, the Hall density is linear with n but the slope is no longer one, which 
might be related to the thermal energy kT being close to the bandwidth, resulting 
in thermally excited carriers with opposite polarity reducing the net Hall effect.

We note that in good correspondence with the quantum oscillation data shown 
in Fig. 3b, we only see the behaviors of the new quasiparticles on one side of the 
Mott-like state, e.g. the side further from the charge neutrality point; between  
the charge neutrality point and the Mott-like state, we see an abrupt change from 
the typical large Fermi surface of the single-particle bands to a small Fermi surface 

of the new quasiparticles. This may result if the effective mass of the quasiparticles 
on one side of the Mott-like gap is considerably greater than the other side, so 
that the oscillation and Hall effect become difficult to observe very close to the 
metal-insulator transition.
Determination of the twist angle. Accurate determination of the twist angles of 
the samples is of utmost importance in understanding the magic-angle physics. We 
use several independent methods to determine the twist angle from transport data.

1. The superlattice density ns, defined by the density required to fill one band 
in the superlattice, is related to the twist angle by

θ
= ≈n

A a
4 8

3
(1)s

2

2

where A is the unit cell area, a =​ 0.246 nm is the lattice constant of graphene. At 
approximately 1° <​ θ <​ 3°, the superlattice densities ±​ns are associated with a pair 
of single-particle bandgaps at their corresponding Fermi energy.13,34,35 Therefore, 
the measured density of the superlattice insulating states can be used to directly 
estimate θ according to Eq. (1). Due to localized states, the accurate value of ns is 
difficult to pinpoint at zero magnetic field, and the estimated θ has an uncertainty 
of about 0.1°–0.2°. Extended Data Fig. 7a-d shows the resistivity (resistance for 
magic-angle device D1) for four different TBG samples of twist angles 
θ =​ 1.38, 1.08, 0.75, 0.65° respectively. At θ =​ 1.38, 1.08°, the positions of the super-
lattice gaps clearly provide an good estimation of θ. However, it is noted in Ref. 17 
that the apparent resistance peaks in the transport data may not correspond to ns 
but instead 2ns, when the twist angle is below 0.9~​1°. We have observed a similar 
phenomenon when twist angle is as small as 0.65°. This complicates the determi-
nation of twist angles, since one encounters an ambiguity of whether the feature 
one observes corresponds to ns or 2ns, which can result in the twist angle wrong by 
a factor of 2.

2. We use the fact that each band edge of the mini-band structure has its own 
Landau levels.13,34,36 Extended Data Fig. 7e shows the magneto-conductance data 
of device D1 (taken first derivative with respect to n). The Landau levels ema-
nating from ns =​ (2.7 ±​ 0.1) ×​ 1012 cm−2 can be clearly seen, which translates to 
θ =​ 1.08° ±​ 0.02° according to Eq. (1). Since the intersection points of the Landau 
levels can be determined relatively accurately (uncertainty of about 1 ×​ 1011 cm−2), 
the twist angle can be determined with an uncertainty of about 0.02° near the first 
magic angle.

3. The effect of applying strong magnetic fields such that the magnetic 
length becomes comparable with the unit cell size is described by Hofstadter’s 
butterfly model.37 In density space, this model is better captured in Wannier’s 
picture.38 In the Wannier diagram, the Landau levels are universally represented 
by n/ns =​ νφ/φ0 +​ s, where φ is the magnetic flux through a unit cell and ν is an 
integer. s =​ 0 labels the main Landau fan and s =​ ±​1 is the (first) satellite fan, etc. 
Adjacent Landau fans intersect when φ/φ0 =​ 1/q, or equivalently, 1/B =​ qA/φ0, 
where q is another integer. Therefore, in the experiments one would expect to 
see Landau level crossings at periodic intervals of 1/B, of which the periodicity is 
proportional to the unit cell area A. This effect has been observed in other two-
dimensional superlattice systems, and can be utilized to cross-check the twist 
angles extracted from other methods.2–4 Extended Data Fig. 7f shows the magneto-
transport data (first derivative with respect to density) of device D3 at high doping 
densities, plotted versus n and 1/B. A periodic crossing of Landau levels is clearly 
observed near at -9×​1012 cm-2. The periodicity is 0.033 ±​ 0.001 T−1, which gives 
A =​ (1.37 ±​ 0.04) ×​ 10−12 cm2 and θ =​ 1.12° ±​ 0.01°, compared to θ =​ 1.12° ±​ 0.02° 
extracted using the previous method (ns =​ (2.9 ±​ 0.1) ×​ 1012 cm−2).
Estimation of the Fermi velocity from capacitance data. The measured capaci-
tance is the series sum of geometric capacitance Cgeom and quantum capacitance Cq. 
The latter is directly proportional to the density of states (DOS) in TBG. Therefore, 
by analyzing the quantum capacitance Cq as a function of carrier density n, one can 
extract the dependence of DOS on n, and subsequently deduce the Fermi velocity.

In the zero temperature limit, the quantum capacitance is related to the DOS 
by Cq =​ e2D(EF), where EF is the Fermi energy. A model system for TBG near the 
charge neutrality consists of massless Dirac fermions with Fermi velocity vF and 
8-fold degeneracy (spin, valley, layer), the DOS is39–41

=
π

D E E ħv( ) 4 ( )F F F
2

Since EF =​ ħvFkF is related to the density n by

=
π
π =

π

=
π

n k E
ħv

E ħv n

8 1
(2 )

2
( )

2

2 F
2 F

2

F
2

F F
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where the factor of 8 comes from spin, valley, and layer, the quantum capacitance 
of the TBG is therefore written as

=
π

| | +C e
ħv

n n2 2 (2)q
2

F
d

Due to disorder, the spatially averaged DOS at the Dirac point (n =​ EF =​ 0) will 
not be absolutely zero. Therefore a phenomenological nd ≈​ 1 ×​ 1010 cm−2 is added 
in the expression above.39

The measured capacitance is then

= +
C C C
1 1 1

(3)
geom q

In Extended Data Fig. 2b, we show the measured capacitance near the Dirac 
point and fitting curves according to Eq. (2) and Eq. (3). The Cgeom is approxi-
mated by the DC gating capacitance Cg ≈​ 7.5 fF. We find that using parameters 
vF =​ 0.15 ×​ 106 m s−1 and nd =​ 1 ×​ 1010 cm−2 gives a reasonable fit to the data meas-
ured at both 0.3 K and 2 K.

We note that the fitting for vF is sensitive to the value used for Cgeom. For 
example, using a Cgeom value 30% larger than the value we used above, we find a 
Fermi velocity of vF =​ 0.10 ×​ 106 m s−1. Similarly, using a value 15% smaller than 
the said value we find vF =​ 0.20 ×​ 106 m s−1. Nonetheless, the analysis present here 
suffices to demonstrate that the Fermi velocity is indeed greatly reduced in the 
capacitance device D2. The slightly larger Fermi velocity compared to that meas-
ured in the transport device D1 vF =​ 0.04 ×​ 106 m s−1 can be attributed to the 
slightly larger twist angle of device D2 θ =​ 1.10°, which might be further from the 
first magic angle θ ≈ . °1 05magic

(1) .
Error bar in Fig. 2a inset. The error bars in Fig. 2a are computed using the 
following criteria:

• For the transport devices D1, D3 and D4, the endpoints of the error bars 
correspond to the points where the conductance rises to 10% of the peak value 
on that side.

• For the capacitance device D2, since the peaks are very sharp (see Fig. 3a), 
the error bar corresponds to the width of the entire peaks in the loss tangent data.
Quantum Oscillations and Extraction of m*. We performed magnetotransport 
measurements in device D1 from 0.3 K to 10 K. At each gate voltage, a polynomial 
background of resistance in B is first removed, and then the oscillation frequency 
and the effective mass is analysed. Examples of the SdH oscillations and their 
temperature dependences at a few representative gate voltages are shown in 
Extended Data Fig. 3a-c. Temperature dependence of the most prominent peak is 
fitted with the Lifshitz–Kosevich formula applied to conductance

⁎χ
χ

χΔ ∝ =
πR kTm

ħeBsinh( )
, 2 (4)

2

and the cyclotron mass m* is extracted from the fitting (examples shown in 
Extended Data Fig. 3d). Within the flat bands, the quantum oscillations univer-
sally disappear at around 10 K except very close to the Dirac point, again consistent 
with the large electron mass and greatly reduced Fermi velocity near the first magic 
angle.

The full magnetoconductance map measured in device D1 at 0.3 K is shown in 
Extended Data Fig. 5c. At a first glance, it may seem that the Landau levels ema-
nating from the Dirac point ‘penetrate’ the half-filling states and continue towards 
the band edges. However, upon closer examination this is not the case. Extended 
Data Fig. 3e-f shows the same data but plotted versus 1/B instead of B. Here it can 
be seen that at densities beyond the half-filling states, the oscillations are clearly 
not converging at the Dirac point, but instead at the half-filling states themselves. 
The oscillation frequencies extracted from this data are plotted in Fig. 3b.
Discussion of the band structure of TBG near magic angles. The general  
evolution of the band structure of TBG above the first magic angle is described in 
a number of earlier works.6,14–16,18,34,35 The low-energy band structure consists of 
two Dirac cones (each is 4-fold degenerate due to valley and spin), with a renor-
malized Fermi velocity

θ α
α

α α=
−
+

≈ − ≤v ( ) 1 3
1 6

1 9 ( 1)F
2

2
2

where α =​ w/(v0kθ) is the dimensionless interlayer hopping amplitude (w, v0 are 
the interlayer hopping energy and original Fermi velocity in graphene, kθ ≈​ Kθ is 
the interlayer momentum difference, K is the wave number at the corner of 
graphene’s Brillouin zone).6,15 vF(θ) passes through zero at α= /1 3 , which 
defines the first magic angle θmagic

(1) . However, to the best of our knowledge the 
detailed evolution of the band structure near the magic angles has not been 
addressed in the literature. Specifically, we ask the following question: as the Fermi 

velocity at the Dirac points changes sign, how does the associated winding number 
evolve? Close to a generic Dirac point, the effective two-band Hamiltonian can be 
written as42
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in which k =​ kx +​ iky. When vF(θ) →​ 0 near the first magic angle, the terms linear 
in k vanish and the dispersion is dominated by the next-leading-order k2 terms.  
A simple form of the k2 term is
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in which m is a parameter with the dimension of mass. In fact, this Hamiltonian 
describes the low-energy band dispersion of monolayer graphene with third-
nearest-neighbour hopping, as well as bilayer graphene with Bernal stacking and 
trigonal warping.42–46 The eigenvalues of this Hamiltonian are
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The evolution of the dispersion described by Eq. (6) with varying vF and a constant 
m =​ 0.5 is shown in Extended Data Fig. 1a–f. The winding number associated with 
a Dirac point is defined by

∮ ∇=
π

| | ⋅k k kw i
2

dk

C

where C is a loop around that Dirac point. The winding number follows a con-
servation law when the motion and merging of Dirac points are considered.42 
The winding number of each band touching point is labelled in Extended Data 
Fig. 1a–f.

When vF →​ 0 there exist three additional Dirac points with opposite winding 
numbers (−​1) to the main Dirac point (+​1). Therefore at vF =​ 0 when all four 
Dirac points merge, the winding number is −​2, since the total winding number 
cannot change.

The simple Hamiltonian form of Eq. (5) is an educated guess. We performed 
numerical calculations of the winding number using the continuum model for 
TBG6,15 and the numerical method in Ref. 47. The results are summarized in 
Extended Data Fig. 1g-l. We find that near the first magic angle of the model being 
used, θ = . °1 064magic

(1) , the picture described in Extended Data Fig. 1a-f is exactly 
what happens at each corner of the mini Brillouin zone (MBZ). The complication 
that arises when one considers the entire MBZ is that, for a given valley (of the 
original grapheme Brillouin zone, e.g. K), the two inequivalent corners of the MBZ 
have the same winding number, because they are the hybridized result of the same 
valley (K) of opposite layers (see Fig. 1d of the main text). Global time reversal 
symmetry is preserved by mapping to the other valley (K′​). Therefore, for a given 
valley K, when the twist angle is reduced from large angles where the winding 
numbers of the two corners are (+​1, +​1) to the first magic angle where the winding 
numbers are (-2,-2), a net winding number change Δ​w =​ 6 occurs between the two 
lowest energy bands. Further theoretical work is necessary to elucidate the physics 
behind this winding number evolution near the first magic angle.

In summary, we show that at exactly the first magic angle, the Dirac point at 
each corner of the MBZ (Ks and ′Ks ) becomes a parabolic band touching with 
winding number -2, similar to bilayer graphene with Bernal stacking except that 
the two corners have the same winding number. The calculation corresponding to 
the first magic angle in Extended Data Fig. 1i can be fit to a paraboloid, giving an 
effective mass of 1.1me. This value can be viewed as the asymptotic limit of the 
effective mass near the charge neutrality point as vF →​ 0.
Density of states (DOS) in MA-BLG. Despite our simplistic representation of 
the DOS in the flat-bands of MA-TBG in main Fig. 4d-f, the actual single-particle 
DOS profile of MA-TBG is rather complex with multiple van Hove singularities 
(vHs). In Extended Data Fig. 6 we show a DOS versus energy plot calculated with 
the continuum model as presented in Ref. 6 for θ =​ 1.08°.
Data availability. The data that support the findings of this study are available 
from the corresponding author on reasonable request.
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Extended Data Figure 1 | Evolution of low-energy band structure of 
TBG near the magic angle. (a-f) E+ dispersion as in Eq. (6) for different 
vF and fixed m =​ 0.5. The kx and ky range in the figures is [−​2, 2], while the 
scale of the colorbar (on the right side of the figures) for the energy axis is 
[0, 10] from bottom to top. The associated winding number of each band 
touching point is labeled in the figures. (g-l) The evolution of the low-
energy band structure of TBG near the first magic angle θ = . °1 064magic

(1)  in 
the model. The color shows the hotspots of the Berry curvature at each 

band touching point. Note that the energy axis spans an extremely small 
range of [-50, 50] μ​eV. The momentum axes are measured by kθ ≈​ Kθ and 
the range for both kx/Kθ and ky/Kθ is [-0.1, 0.1]. The center of the 
momentum space is the Ks point of the MBZ (see main Fig. 1d), and the 
thick lines denotes the Ks–Ms– ′Ks  directions (there are three inequivalent 
ones). All results are shown for the K-valley continuum description of 
TBG.6
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Extended Data Figure 2 | Capacitance measurement setup and 
extraction of the Fermi velocity. (a) Schematic for the low-temperature 
capacitance bridge. The X and Y outputs from the lock-in amplifier refer to 
the in-phase and out-of-phase components respectively. C(device) and Rseries 
are the capacitance and resistance of the sample. Vg is the DC gate voltage. 

All connections into and out from the cryostat are made with coaxial 
cables. (b) Capacitance of device D2 near the charge neutrality point, 
and fitting curves according to Eq. (4, 5) with different Fermi velocities. 
v0 =​ 106 m s−1 is the Fermi velocity in pristine graphene.
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Extended Data Figure 3 | Quantum oscillations and extraction of the 
effective mass. (a-c) Temperature-dependent magnetoconductance  
of device D1 at gate voltages (a) n =​ −​2.08 ×​ 1012 cm−2, (b) n =​  
−​1.00 ×​ 1012 cm−2 and (c) n =​ 0.19 ×​ 1012 cm−2. The temperatures are 
from dark to bright, 0.3 K, 1.7 K, 4.2 K and 10.7 K respectively. The figure 
on the right summarizes the oscillation amplitudes of the most prominent 
peaks in (a-c). The curves are fitted according to the L-K formula  

Eq. (4). (e) Magnetoconductance of device D1 (measured at 0.3 K) plotted 
versus n and 1/B. (f) The same data with a polynomial background in B 
removed for each density. The green boxes denote the range of density for 
the half-filling states. It can be seen that at densities beyond the half-filling 
states the oscillations are clearly not converging at the Dirac point, but 
instead the half-filling states themselves.
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Extended Data Figure 4 | Supplementary transport data in device D3 
and D4. (a) Magnetoconductance in device D3 (θ =​ 1.12°) versus n and B. 
The primary features at the superlattice gaps ±​ns and the half-filling states 
±​ns/2 are essentially identical to device D1. (b-c) Four-probe and two-
probe conductance measured in device D4 (θ =​ 1.16°) at 0.3 K. The colored 
vertical bars and the corresponding numbers indicate the associated 
integer filling inside each unit cell of the moiré pattern. Besides clear 
observation of the half-filling states (±​2), we also observe weak drops in 

the four-probe conductivity that point towards three-quarter-filling states 
at ±​3. (d-e) Hall measurement in device D4 at various temperatures.  
(d) shows the Hall coefficients RH while (e) shows the Hall density nH =​  
−​1/(eRH). The colored vertical bars and the corresponding numbers 
indicate the associated integer fillings in the moiré unit cell. The x-axis is 
the gate-induced total charge density n, while the Hall density nH and its 
sign indicates the number density and characteristic (electron-like or  
hole-like) of the carriers being transported.
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Extended Data Figure 5 | Supplementary transport data in device D1. 
(a) Temperature dependence of conductance of device D1 from 0.3 K 
to 300 K. (b) The conductance versus temperature at five characteristic 
carrier densities labelled A± (superlattice gaps), B± (above and below 
the Dirac point) and D (the Dirac point) in (a). The arrow denotes the 
temperature above which the conductances at B± merge with D. The 
solid lines accompanying A± traces are Arrhenius fit to the data. The 
thermal activation gaps of the superlattice insulating states at A± can be 
obtained by fitting the temperature dependence of the conductance at 
these densities. Detailed discussion about the superlattice gaps in non-
magic-angle devices are published in Ref. 13. The fit to Arrhenius formula 
exp[−​Δ/(2kT)] yields Δ− =​ 32 meV for the A– gap and Δ+ =​ 40 meV for 
the A+ gap. For comparison, the same gaps measured in θ =​ 1.8° TBG are 

slightly larger at Δ− =​ 50 meV and Δ+ =​ 60 meV for the gaps at negative 
and positive densities respectively.13 (c) Magnetoconductance in device D1 
as a function of gate-induced charge density n and perpendicular magnetic 
field B. (d) Magnetoconductance in device D1 measured as a function 
of n and in-plane magnetic field B‖. The in-plane measurement is taken 
at a higher temperature of about 2 K. Combined with the degradation of 
the sample quality resulting from the thermal cycling that was necessary 
in order to change the field orientation, the half-filling states are not as 
well developed as in the previous measurements. However, the gradual 
suppression of the half-filling states is still unambiguously observed when 
B‖ is above about 6 T, slightly higher but similar to the 4~​6 T threshold for 
the perpendicular field [see (c) and Fig. 4a, b].

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ACCELE
RATED A

RTIC
LE

 P
REVIE

W

LetterRESEARCH

Extended Data Figure 6 | Density of states (DOS) in MA-TBG. Single-
particle DOS in TBG at θ =​ 1.08°, in linear (a) and logarithmic scale (b). 
The red dashed lines denotes the energy where the lower and upper flat 

bands are half-filled, respectively. The results are numerically obtained 
using the continuum model.6
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Extended Data Figure 7 | Determination of the twist angle. (a-d) 
Resistivity (resistance for the θ =​ 1.08° device) measurements for four 
samples with different twist angles, θ =​ 1.38°, 1.08°, 0.75° and 0.65°. The 
solid arrows point towards superlattice features at ±​ns, while empty 
arrows point to ±​2ns features that may have correspondence to features 
reported in Ref. 17. We have only observed the half-filling states in 
devices that have twist angles within 0.1° of the first magic angle so far. 
(e) Magnetoconductance data of device D1 (θ =​ 1.08°) measured at 4 K 

and taken derivative with respect to n. The dashed fans labels the main 
(green) and satellite (blue) Landau fans respectively. From the converging 
point of the blue fans, one can accurately determine the superlattice 
density ns and thus θ, with uncertainty of about 0.02°. (f) Hofstadter’s 
oscillation manifested as periodic crossings of Landau levels in 1/B. Data 
shown is the magnetoconductance data of device D3 (θ =​ 1.12°) which is 
taken first derivative in n. The horizontal lines have a uniform spacing of 
0.033 =​ 0.001 T−1, which converts to θ =​ 1.12° ±​ 0.01°.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


	Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

	Acknowledgements
	Author Contributions

	Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
	﻿Figure 1﻿﻿ |﻿﻿ ﻿ Electronic band structure of twisted bilayer graphene (TBG).
	﻿Figure 2﻿﻿ |﻿﻿ ﻿ Half-filling insulating states in magic-angle TBG (MA-TBG).
	﻿Figure 3﻿﻿ |﻿﻿ ﻿ Flat bands in MA-TBG.
	﻿Figure 4﻿﻿ |﻿﻿ ﻿ Magnetic field response of the half-filling insulating phases.
	﻿Extended Data Figure 1﻿﻿ |﻿﻿ ﻿ Evolution of low-energy band structure of TBG near the magic angle.
	﻿Extended Data Figure 2﻿﻿ |﻿﻿ ﻿ Capacitance measurement setup and extraction of the Fermi velocity.
	﻿Extended Data Figure 3﻿﻿ |﻿﻿ ﻿ Quantum oscillations and extraction of the effective mass.
	﻿Extended Data Figure 4﻿﻿ |﻿﻿ ﻿ Supplementary transport data in device D3 and D4.
	﻿Extended Data Figure 5﻿﻿ |﻿﻿ ﻿ Supplementary transport data in device D1.
	﻿Extended Data Figure 6﻿﻿ |﻿﻿ ﻿ Density of states (DOS) in MA-TBG.
	﻿Extended Data Figure 7﻿﻿ |﻿﻿ ﻿ Determination of the twist angle.

	Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

	Authors
	Abstract
	References
	Acknowledgements
	Author Contributions

	Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
	Authors
	﻿Figure 1﻿﻿ Electronic band structure of twisted bilayer graphene (TBG).
	﻿Figure 2﻿﻿ Half-filling insulating states in magic-angle TBG (MA-TBG).
	﻿Figure 3﻿﻿ Flat bands in MA-TBG.
	﻿Figure 4﻿﻿ Magnetic field response of the half-filling insulating phases.
	﻿Extended Data Figure 1﻿﻿ Evolution of low-energy band structure of TBG near the magic angle.
	﻿Extended Data Figure 2﻿﻿ Capacitance measurement setup and extraction of the Fermi velocity.
	﻿Extended Data Figure 3﻿﻿ Quantum oscillations and extraction of the effective mass.
	﻿Extended Data Figure 4﻿﻿ Supplementary transport data in device D3 and D4.
	﻿Extended Data Figure 5﻿﻿ Supplementary transport data in device D1.
	﻿Extended Data Figure 6﻿﻿ Density of states (DOS) in MA-TBG.
	﻿Extended Data Figure 7﻿﻿ Determination of the twist angle.




